Matrices permutation equivalent to primitive matrices
نویسندگان
چکیده
منابع مشابه
Approximating Orthogonal Matrices by Permutation Matrices
Motivated in part by a problem of combinatorial optimization and in part by analogies with quantum computations, we consider approximations of orthogonal matrices U by “non-commutative convex combinations”A of permutation matrices of the type A = P Aσσ, where σ are permutation matrices and Aσ are positive semidefinite n × n matrices summing up to the identity matrix. We prove that for every n× ...
متن کاملOn tridiagonal matrices unitarily equivalent to normal matrices
In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...
متن کاملSpectral statistics of permutation matrices.
We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading an...
متن کاملPartial Transpose of Permutation Matrices
The main purpose of this paper is to look at the notion of partial transpose from the combinatorial side. In this perspective, we solve some basic enumeration problems involving partial transpose of permutation matrices. Specifically, we count the number of permutations matrices which are invariant under partial transpose. We count the number of permutation matrices which are still permutation ...
متن کاملPartial Transposes of Permutation Matrices
The partial transpose of a block matrix M is the matrix obtained by transposing the blocks of M independently. We approach the notion of the partial transpose from a combinatorial point of view. In this perspective, we solve some basic enumeration problems concerning the partial transpose of permutation matrices. More specifically, we count the number of permutations matrices which are invarian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1985
ISSN: 0024-3795
DOI: 10.1016/0024-3795(85)90099-0